Questions? +1 (202) 540-8337 Login
Trusted News Since 1995
A service for energy industry professionals · Tuesday, February 20, 2018 · 433,067,048 Articles · 3+ Million Readers

2017-2027 $7 Billion High Power Energy Harvesting Markets - Off-Grid 10W-1MW

/EIN News/ -- Dublin, Jan. 08, 2018 (GLOBE NEWSWIRE) -- The "High Power Energy Harvesting: Off-Grid 10W-1MW 2017-2027" report has been added to Research and Markets' offering.

The Market for Renewable Off-Grid Energy Harvesting will be Over $7 Billion in 2027

This unique report reflects the new reality that energy harvesting - creation of off-grid electricity where it is needed, using ambient energy - is now widely deployable up to 100kW and beyond. This is resulting in dramatic new capabilities such as the rapidly growing number of land, water and air vehicles that operate entirely on sunshine and electricity becoming affordable and feasible in remote parts of Africa.

It will result in the electric vehicle that has longer range than the vehicles it replaces. It makes autonomous vehicles more feasible and shipping much more efficient. Only a global up-to-date view makes sense in this fast-moving subject embracing Google airborne wind energy (AWE), Facebook solar robot aircraft, Siemens small wind turbines and regenerative braking. There are already autonomous underwater vehicles (AUVs) and navigation buoys that combine solar and wave power.

Energy harvesting is now a booming business at the level of 10 watts to 100 kilowatts and beyond, off-grid. That includes making a vehicle, boat or plane more efficient such as energy harvesting shock absorbers and high speed flywheels, reversing alternators and motors for instance on the propeller of a boat under sail or moored in a tidestream and regeneratively soaring aircraft and braking cars and forklifts. Similar technology now harvests the energy of a swinging construction vehicle, dropping elevator and so on and soon the heat of engines will be harvested in kilowatts and off-grid wave power will become commonplace.

High power energy harvesting also embraces off-grid creation of electricity that will be used generally such as that harnessing photovoltaics, small wind turbines and what enhances or replaces them such as the new airborne wind energy (AWE). This is underwritten by both strong demand for today's forms of high power EH and a recent flood of important new inventions that increase the power capability and versatility of many of the basic technologies of energy harvesting. It all reads onto the megatrends of this century - reducing global warming and local air, water and noise pollution, relieving poverty and conserving resources.

Key Topics Covered:

1.1. Definition and characteristics
1.1.1. Definition
1.1.2. Overview of need
1.1.3. Characteristics
1.2. Market overview
1.2.1. Largest value market by power
1.3. Maturity of market by application
1.4. Hype curve for energy harvesting applications
1.5. EH systems
1.6. Multiple energy harvesting
1.7. Market forecast 2017-2027
1.7.1. The big picture
1.7.2. Forecasts by technology
1.7.3. Overall market for transducers
1.7.4. Market for power conditioning
1.8. Technology timeline 2017-2027
1.9. Detailed technology sector forecasts 2017-2027
1.9.1. Electrodynamic
1.9.2. Photovoltaic
1.9.3. Thermoelectrics
1.9.4. Territorial differences
1.9.5. Focus on off-grid
1.10. Some energy harvesting highlights of "Analyst Show!" Berlin May 2017
1.11. Twistron from University of Texas at Dallas 2017
1.12. Energy-harvesting shock absorber

2.1. HPEH Technology
2.2. Technologies compared
2.2.1. Parametric
2.2.2. System design: transducer, power conditioning, energy storage
2.3. Mature technologies
2.3.1. Wind turbines, rotary blade
2.3.2. Portable wind turbine for clean energy anywhere
2.3.3. Conventional photovoltaics
2.3.4. Regenerative braking
2.3.5. Renewable energy is often turned off or wasted
2.4. A glimpse of the future: Lizard Electric Vehicles
2.5. Off-grid wave harvesting
2.5.1. Introduction
2.5.2. Dielectric Elastomer Generators DEG
2.5.3. CorPower Ocean Sweden
2.5.4. Levant Power USA
2.5.5. National Agency for New Energy Technologies (ENEA) Italy
2.5.6. Oscilla Power USA magnetorestrictive
2.6. HPEH in context: IRENA Roadmap to 27% Renewable
2.7. Electric vehicle end game: free non-stop road travel
2.8. Simpler, More Viable Off-grid Power in 2016
2.9. Tesla the Follower
2.10. Electricity Utilities Reinvented and Bypassed

3.1. Definition and scope
3.2. Many modes and applications compared
3.2.1. Options by medium
3.2.2. Examples compared
3.3. Flywheel KERS
3.4. Active regenerative suspension: Levant Power USA
3.5. Audi regenerative suspension
3.6. Airborne Wind Energy AWE
3.6.1. Rotating dual kites the ultimate? Kite Power Solutions UK
3.6.2. Kite-surfing in the stratosphere
3.7. Favoured technologies
3.7.1. EnerKite Germany
3.7.2. Google Makani USA
3.7.3. e-Wind USA
3.7.4. TwingTec Switzerland
3.7.5. Ampyx Power Netherlands
3.7.6. Altaeros USA
3.7.7. Kitemill Norway
3.7.8. Kitegen Italy
3.7.9. Commercialisation targets
3.7.10. Analyst assessment
3.7.11. ABB assessment
3.8. Reinventing Wind Turbines for Vehicles, including Energy Independent
3.9. Energy harvesting shock absorbers
3.9.1. Linear shock absorbers
3.9.2. Rotary shock absorbers
3.9.3. Tenneco Automotive Operating Company USA
3.10. Wave power competition
3.11. Energy from waves using an artificial blowhole
3.12. Witt Energy 6D Motion Harvesting for boats and buoys

4.1. Photovoltaic
4.1.1. Flexible, conformal, transparent, UV, IR
4.1.2. Technological options
4.1.3. Principles of operation
4.1.4. Options for flexible PV
4.1.5. Many types of photovoltaics needed for harvesting
4.1.6. Spray on power for electric vehicles and more
4.1.7. New world record for both sides-contacted silicon solar cells
4.2. Powerweave harvesting and storage e-fiber/ e-textile
4.3. Solar roads find many uses
4.4. Non-toxic and cheap thin-film solar cells
4.5. Clearwater Mills LLC - Waterwheel Powered Trash Interceptor

5.1. The Seebeck and Peltier effects
5.2. Highest power thermoelectrics
5.3. Designing for thermoelectric applications
5.4. Material choices
5.5. Other processing techniques
5.5.1. Micropelt iTRV - EnOcean Remote Management
5.6. Manufacturing of flexible thermoelectric generators
5.7. AIST technology details
5.8. Automotive applications
5.8.1. BMW Germany
5.8.2. Ford USA
5.8.3. Volkswagen Germany
5.8.4. Challenges of Thermoelectrics for Vehicles
5.8.5. Marlow Industries USA
5.8.6. Yamaha Japan DLR Germany in 2017
5.9. Building and home automation
5.10. Solar TEG
5.11. Solar-powered EV promises 500-mile range
5.12 Eco Marine Power's Rigid solar EnergySail

6.1. Geothermal
6.1.1. World's largest ocean thermal plant
6.2. Magnetostrictive
6.3. Nantenna-diode rectenna arrays
6.3.1. Idaho State Laboratory, University of Missouri, University of Colorado, Microcontinuum
6.3.2. University of Maryland
6.4. Thermoacoustic
6.5. Electricity from car tires
6.5.1. Tire EH Goodyear concept 2016
6.6. Not quite energy harvesting: microbial fuel cells, directed RF, betavoltaics
6.7. Triboelectric
6.7.1. Interview with Prof. Zhong Lin Wang Gatech 11 May 2017


8.1. Agusta Westland Italy
8.2. Enerbee France
8.3. Eight19 UK
8.4. Faradair Aerospace UK
8.5. IFEVS Italy
8.6. Jabil USA
8.7. Komatsu KELK Japan
8.8. LG Chem Korea
8.9. Marlow USA
8.10. Pavegen UK
8.11. Piezotech France
8.12. RMT Russia and TEC Microsystems Germany
8.13. Examples of recent research
8.14. Examples of Interviews Concerning High Power Energy Harvesting on Marine Craft 2015
8.15. Examples of presentations at Electric and Hybrid Marine Amsterdam June 2015

For more information about this report visit

                    CONTACT: Research and Markets
                             Laura Wood, Senior Manager
                             For E.S.T Office Hours Call 1-917-300-0470
                             For U.S./CAN Toll Free Call 1-800-526-8630
                             For GMT Office Hours Call +353-1-416-8900
                             Related Topics: Energy Storage

Primary Logo

Powered by EIN News